
Transport properties of clean and disordered Josephson-junction arrays

Aleksandra Petković,1,2 Valerii M. Vinokur,2 and Thomas Nattermann1

1Institut für Theoretische Physik, Universität zu Köln, Zülpicher Strasse 77, 50937 Köln, Germany
2Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

�Received 14 October 2009; revised manuscript received 27 November 2009; published 30 December 2009�

We investigate the influence of quantum fluctuations and weak disorder on the vortex dynamics in a
two-dimensional superconducting Berezinskii-Kosterlitz-Thouless system. The temperature below which quan-
tum fluctuations dominate the vortex creep is determined and the transport in this quantum regime is described.
The crossover from quantum to classical regime is discussed and the quantum correction to the classical
current-voltage relation is determined. It is found that weak disorder can effectively reduce the critical current
as compared to that in the clean system.
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The physics of the Berezinskii-Kosterlitz-Thouless �BKT�
transition in thin superconducting films is re-emerging as one
of the mainstreams in current condensed-matter physics. The
interest is motivated by recent advances in studies of layered
high-temperature superconductors,1,2 the discovery of the su-
perconductivity at the interface between the insulating
oxides,3,4 studies in thin superconducting films uncovering
the role of the two-dimensional �2D� superconducting
fluctuations,5,6 and the intense developments in the physics
of the superconductor-insulator transition where the BKT
transition may play a major role.7

The predicted benchmark of the transition that serves to
detect it experimentally is the change in the shape of the I-V
characteristics, V� I1+� from �=0 above the transition, T
�TBKT, to �=2�TBKT /T� at T�TBKT.8,9 However, experi-
mental data on superconducting films show appreciable de-
viations from the theoretical predictions and are still
inconclusive.10 Among the possible sources of the deviation
from the classic predictions, one can consider the finite-size
effect,11,12 and effects of disorder.13–15 Another important is-
sue is the role of quantum effects which become crucial
when the BKT transition occurs at low enough temperatures.
In this Brief Report we will analyze the role of quantum
effects in the BKT transition paying a special attention to the
intermediate region of the interplay between thermal and
quantum contributions. We will discuss the effect of
disorder-generated vortices on the BKT transition, neglecting
quantum fluctuations, namely, the effective reduction in the
critical current as compared to that in clean samples.

Model. We choose a disordered Josephson junction array
as a convenient discrete model for the 2D disordered super-
conducting film.16 The Hamiltonian describing the system is

H =
1

2�
i,j

�C−1�i,jn̂in̂j − J�
�i,j�

cos��̂i − �̂ j − Aij� , �1�

where �n̂j , �̂k�=−2ei� j,k. We ignore single-electron tunneling
and other sources of dissipation. The only nonvanishing ele-
ments of the capacitance matrix Cij are its diagonal elements
Cjj =4C �no summation over the repeated index� and Cij
=−C for the nearest neighbors i , j, i.e., the capacitance to the
ground is assumed negligible as compared to the mutual ca-
pacitances of the superconducting islands. The second sum

in Eq. �1� is taken over all nearest-neighbor pairs on a square
lattice. Random-phase shifts Aij result from the deviations of
the flux in a distorted plaquette from an integer multiple of
the flux quantum �0=	c /2e.17

In the clean classical case, i.e., for Aij =0 and in the limit
C→
, the physics of the system can be most adequately
described in terms of vortices that experience the supercon-
ducting BKT transition at the temperature TBKT��J̃ /2,

where J̃ denotes the renormalized coupling constant. It is
convenient to decompose the phase at the site i, as �i=�i

�v�

+�i
�sw� where �v� and �sw� stand for the vortex and the spin

wave part, respectively. Then, the vortex Hamiltonian can be
written as

Hv = − J��
i�j

mimj ln
	ri − r j	

�
+ �

i

Ecmi
2, �2�

where Ec denotes the core energy of a vortex. The sums are
taken over the sites ri of a dual lattice; mi is the vorticity of
the ith vortex, and we assumed that �imi=0, where � denotes
the superconductor coherence length.

Next we want to include quantum fluctuations. After go-
ing over to the path integral representation of the partition
function and integrating out the charge degrees of freedom,
the action of the Josephson junction array in the limit Ec
=e2 /2CJ assumes the form16,18

S =
 d��M

2 �
i

���ri�2 + Hv� . �3�

The vectors ri��� are the world lines of the vortices and M
=h2C / �8e2�2�.

Clean case. We begin with the discussion of a clean case.
If we apply an external transport current, it will exert the
force f j on the vortices, where j is the current density.19

This generates an additional term −�imif ·ri in Eq. �2�. In
order to describe the effect of vortices on the current-voltage
relation quantitatively, we consider the effect of vortices
crossing the system transversely to the transport current. This
motion dissipates energy. The Bardeen-Stephen flux flow
resistance20 gives for the current-voltage �V-I� relation
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V = 2��2�nnvI , �4�

where nv is the vortex density and �n is the normal-state
resistivity. The rate equation for the vortex density is

�tnv = � −
�2

�rec
nv

2. �5�

Here � denotes the rate of generation of free vortices, while
the second term on the right-hand side of Eq. �5� describes
their recombination, �rec denotes the recombination param-
eter. The steady-state value nv= ��rec��1/2 /� of the vortex
density determines the current-voltage relation.

In order to determine �, we consider the appearance of a
vortex-antivortex pair and its subsequent separation via tun-
neling or thermal activation under the influence of the exter-
nal force f. In the clean case this process is symmetric, i.e.,
the coordinates of the vortex r1 and the antivortex r2 satisfy
r1=−r2=r with f ·r= fr. The action of the vortex pair can be
rewritten as

S =
 d��M���r�2 + U�r�� , �6�

where U�r�=2�J ln� 2r
� �−2fr+2Ec. The problem effectively

reduces to a single-particle motion through one-dimensional
potential barrier U�r�.21

The rate � is given by22

�  

0




dE��E�e−E/T, �7�

where ��E� denotes the zero-temperature tunneling rate of a
particle in the potential U�r� having an energy E. For low
temperatures and hence E smaller than the barrier height
U0=2�J�ln� 2�J

f� �−1�+2Ec, ��E� in the Wentzel-Kramers-
Brillouin approximation is

��E� = e−4�M�ra�E�
rb�E�dr�U�r�−E/	, �8�

where ra/b�E� satisfy U�ra/b�=E �see Fig. 1�. In the following
different regimes will be considered.

�i� At zero temperature the only contribution in Eq. �7�
comes from E=0. The generated voltage for small currents
�f� /J1� is

V  �1/2  e−S�0,0�/2	,

S�0,0�
	

� c1

�M�2J��3/2

	f
�ln

2J�

f�
�3/2

. �9�

c1 is a positive constant of the order of unity and

S�E,T�
	

=
E

T
+ 4�M


ra�E�

rb�E�

dr
�U�r� − E

	
�10�

is the action of the classical path of the particle in the poten-
tial −U�r� with the energy E and mass 2M. The result, Eq.
�9�, is in agreement with that of Ref. 23 where it is obtained
using the different technique.24 We find that the result, Eq.
�9�, holds also at finite temperatures as long as

T � T0 =
1

c2

	f
��2JM

1

�ln
�2J

f�

, �11�

where c2 is positive constant of the order of unity.
�ii� At intermediate temperatures T0�T�T�, where

T� =
	

2�
�− U��rc�

2M
=

	f

2�
� 1

MJ�
, �12�

the main contribution in Eq. �7� comes from the stationary
point ET. Therefore, Vexp�−S�ET ,T� /2	�. ET depends on
the temperature and is implicitly given by the equation

	

T
= 2�M


ra�ET�

rb�ET�

dr
1

�U�r� − ET

= ��ET� , �13�

where ��E� can be interpreted as the period of the classical
motion of a particle with the mass 2M and energy E, in the
potential −U�r�. Since ��E� is the monotonically decreasing
function of E for small currents, Eq. �13� has the unique
solution ET for every T in a range T0�T�T�. We come back
to the discussion of the voltage characteristic in this regime
below.

�iii� At even higher temperatures T��T�TBKT, the decay
rate is dominated by E�U0 �Refs. 22 and 25� and the ther-
mally activated breaking of vortex pairs dominates the dy-
namics. Then, the decay rate is given by the Arrhenius law
�exp�−Sclass /	�, where Sclass=	U0 /T. The voltage-current
relation reads8,26

V  fe−U0/�2T�  j��T�, ��T� = 1 + �J/T . �14�

Taking into account the presence of other vortices by replac-
ing J→ J̃, the coefficient assumes a universal value
��TBKT�=3.

�iv� At T�TBKT a finite density of free vortices appears in
an equilibrium, and the system is characterized by a linear
current-voltage relation for small enough currents.

Next, we consider crossover from the quantum �T�T0� to
the classical regime �T�T�� in more detail. Within the semi-
classical approximation the decay rate is given, with the ex-
ponential accuracy, by �exp�−Smin /	�, where Smin is the
action of the trajectory minimizing the Euclidean action of
Eq. �6�. For temperatures below T0 the extremal action is
Smin=S�0,0�, in the intermediate region �T0�T�T�� the
minimal action is Smin=S�ET ,T�, and in the high-temperature

U(r)

rra rbrc

E

U0

FIG. 1. Potential barrier for the separation of the vortex-
antivortex pair.
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regime the trajectory extremizing the action is time indepen-
dent, and therefore Smin=	U0 /T. We find that Smin at T� has
a continuous first derivative with respect to temperature
while the second derivative has a jump

�dS�ET,T�
dT

�
T�

= �dSclass

dT
�

T�

,

�d2S�ET,T�
dT2 �

T�

� �d2Sclass

dT2 �
T�

. �15�

Following Ref. 27 we call this situation a second-order tran-
sition at the crossover point.28 The result of Eq. �15� is a
general property of a massive particle trapped in a metastable
state formed by a potential U�r�, provided ��E� is a monoto-
nously decreasing function of energy.29

Generally, in the case of a second-order transition the tra-
jectory extremizing the action can be written as27

r��� = rc + �
n=1




an cos�2�T

	
n�� , �16�

where the coefficients 	an	 	a1	 �n�1� are small near the
transition temperature T�. Substituting r��� in Eq. �6�, the
action can be expanded in powers of an, yielding an effective
action S�U0	 /T+�a1

2+�a1
4, where the coefficient � is

negative below T� and vanishes at the transition temperature
T�.27 Then the coefficient a1 can be found from the minimi-
zation of the action S and the minimal action is Smin
=U0	 /T−�2 / �4��. Following Ref. 27, we determine the co-
efficients � and � and find a quantum correction to the clas-
sical result of Eq. �14�

V  j��T�e�,

� =
�T2 − T�2�2

TT�3

�MJ3

	f

�5/2

1 + 2�1 − 4�T/T��2�−1 . �17�

This result is valid near the transition, for temperatures ap-
proaching T� from below, see Fig. 2. We conclude that quan-
tum effects significantly enhance the decay rate in compari-

son to the classical rate for the asymptotically small currents.
It would be interesting to probe the result of Eq. �17� in
experiments.

Disordered case. Next we include disorder into the con-
sideration in the limit C→
. The phase shifts are assumed to
be uncorrelated from bond to bond, and each is Gaussian
distributed with the mean value and the variance

Aij = 0, Aij
2 = � , �18�

respectively. Then, an additional term �imiV�ri� is generated
in Eq. �2�, where V�ri�=2�J� jQj ln�	ri−r j	 /��. Qi
= �1 /2����plaq�Aij are the frozen charges sitting on the dual
lattice in the center of a plaquette whereas the sum is over a
plaquette formed by four bonds. From Eq. �18� follows
�V�ri�−V�r j��2=4��J2 ln�	ri−r j	 /��.

It was shown in Ref. 13, that the system in the classical
case, at T=0 undergoes a disorder-driven transition from the
“ordered” BKT state to a disordered phase at the critical
disorder strength �c=� /8. In the ordered BKT phase vorti-
ces appear, on average, only in a form of the bound pairs.
Indeed, the energy of a vortex pair with the separation R and
m1=−m2=1 in a clean sample is given by 2�J ln�R /��.
Since V�ri� is Gaussian distributed, the typical energy gain is
−2J��� ln�R /�� which is smaller by a factor �ln�R /���−1/2

than the energy cost of a pair. However, the maximum en-
ergy gain of a vortex dipole in a region of linear size L�R
is larger by a factor �2 ln N than the typical energy gain,
which arises from the N independent realizations of the
vortex positions.14 The disorder potential, that one vortex-
antivortex pair of size R+dR feels, is uncorrelated when
the pair is translated over a distance larger than R.30

Therefore, we introduce a lattice with a lattice constant R.
Since also the correlations of disorder potential inside the
cell give only subleading-order corrections,30 we estimate
N��L /R�2�R /��2�2�R /��dR /�. For dR�R, we get the free
energy of the pair at T=0

E � 2�J ln
R

�
�1 −�4�

�

ln�LR/�2�
ln�R/��

� . �19�

Thus, if R�L, the total energy of the corresponding vortex
pair becomes negative and free vortices are favored by dis-
order provided ���c=� /8, in an agreement with the renor-
malization group result in Ref. 13. Note that strictly speaking
these vortices are “pseudofree” since despite the fact that
their attraction is overruled by disorder, they remain pinned
by the same disorder-induced forces. It follows from the
above reasoning that even for ���c some rare vortex pairs
of the negative energy can appear. From Eq. �19� we get that
their maximal size is Rc���L /��1/�2�c/�−1�, which reaches the
size of the system for �→�c−0, as expected. Typically there
is a single dipole of the size Rc in the system. If we divide
the system into M2 subsystems, each part will contain a di-
pole of the maximum size RM �RcM

−1/�2�c/�−1�. The density
of dipoles of the size RM is �−2�RM /��2�1−2�c/�� at T=0, in
agreement with Ref. 30.

We further determine the critical current. If the transport
current is strong enough, it will depin vortices such that the

j

T

V ∼ jδ(T )

V
∼

e
−

S
(0

,0
)

2h̄

V ∼ e−
S(ET ,T )

2h̄

T ∗
T0

FIG. 2. Dynamic phase diagram in current-temperature coordi-
nates showing different types V�j ,T� dependencies for T�TBKT.
The dashed and the solid lines sketch T0�j� and T��j�, respectively.
In the domain T�T0 quantum tunneling of vortices dominates the
vortex dynamics while at T�T� the voltage-current characteristics
is determined by the thermally activated motion. In the shaded re-
gion the quantum correction to the classical result, given by Eq.
�17�, applies.
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dissipation sets in. A crude estimate for the critical depinning
force at T=0 and ���c is given by

fc 
J

Rc


J

�
�L

�
�−1/�2�c/�−1�

�20�

since smaller dipoles are depinned at larger forces. The in-
fluence of disorder on the voltage-current relation is left for
further studies.

Conclusion. We have investigated transport properties of
Josephson junction arrays taking into account the influence
of quantum fluctuations on the unbinding of vortex pairs for
EcJ. At sufficiently low temperatures the quantum tunnel-
ing of vortices turns out to be more probable than their ther-
mal activation. We have derived the V-I relation correspond-
ing to the quantum creep of the BKT vortices and found the
range of temperatures, 0�T�T0, where this law is appli-
cable. We have determined the temperature T� above which
the thermally activated breaking of vortex pairs dominates

the vortex nucleation. We have discussed the region of inter-
mediate temperatures T0�T�T� where a crossover from
classical to quantum behavior occurs and found the quantum
correction to the classical result, see Eq. �17�. The results are
schematically summarized in Fig. 2 and can be straightfor-
wardly extended to the quantum limit Ec�J, where the
transport is mediated by the motion of charges dual to the
superconducting vortices, via the standard dual transforma-
tion. Moreover, in the presence of positional disorder and for
C→
, we have shown that additional vortices generated by
the disorder contribute to transport, effectively reducing the
critical current as compared to that in a clean system.
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